
RPly Documentation
Release 0.7.4

Alex Gaynor

December 18, 2016

Contents

1 User’s Guide 3
1.1 Generating Lexers . 3
1.2 Generating Parsers . 4

2 API Documentation 9
2.1 rply . 9
2.2 rply.token . 9

3 Additional Information 11
3.1 License . 11

Python Module Index 13

i

ii

RPly Documentation, Release 0.7.4

Welcome to RPLY! A pure python parser generator, that also works with RPython. It is a more-or-less direct port of
David Beazley’s awesome PLY, with a new public API, and RPython support.

To start using RPly head over to Generating Lexers to learn how to generate lexers, and Generating Parsers after that
to see how you can turn the tokens generated by your lexer into something more useful.

Contents 1

RPly Documentation, Release 0.7.4

2 Contents

CHAPTER 1

User’s Guide

1.1 Generating Lexers

In order to parse text, you first have to turn that text into individual tokens with a lexer. Such a lexer can be generated
with the rply.LexerGenerator.

Lexers are generated by adding rules to a LexerGenerator instance. Such a rule consists of a name, which will be used
as the type of the token generated with that rule, and a regular expression defining the piece of text to be matched.

As an example we will attempt to generate a lexer for simple mathematical expressions:

lg = LexerGenerator()

lg.add('NUMBER', r'\d+')

lg.add('PLUS', r'\+')
lg.add('MINUS', r'-')

We have no defined rules for numbers, an addition and subtraction operator. We can now build a lexer and use it:

>>> l = lg.build()
>>> for token in l.lex('1+1-1'):
... print(token)
...
Token(NUMBER, '1')
Token(ADD, '+')
Token(NUMBER, '1')
Token(MINUS, '-')
Token(NUMBER, '1')

This works quite nicely however there is but a small problem:

>>> for token in l.lex('1 + 1'):
... print(token)
Token('NUMBER', '1')
Traceback (most recent call last):
...
rply.errors.LexingError

What happened is that the lexer is able to match the 1 at the beginning of the string and it yields the correct token for
that but afterwards the string ‘‘ + 1‘‘ is left and no rule matches.

While we do want lexing to continue at that stage, we do not care about whitespace and would like to ignore it. This
can be done using ignore():

3

RPly Documentation, Release 0.7.4

lg.ignore(r'\s+')

This adds a rule which will be ignored by the lexer and not produce any tokens:

>>> l = lg.build()
>>> for token in l.lex('1 + 1'):
... print(token)
...
Token('NUMBER', '1')
Token('ADD', '+')
Token('NUMBER', '1')

With this you know everything there is to know about generating lexers.

1.2 Generating Parsers

In this part of the tutorial we will generate a parser for simple mathematical expressions as defined by the following
BNF grammar:

<expression> ::= "\d+"
| <expression> "+" <expression>
| <expression> "-" <expression>
| <expression> "*" <expression>
| <expression> "/" <expression>
| "(" <expression> ")"

Furthermore we use the following lexer:

from rply import LexerGenerator

lg = LexerGenerator()

lg.add('NUMBER', r'\d+')
lg.add('PLUS', r'\+')
lg.add('MINUS', r'-')
lg.add('MUL', r'*')
lg.add('DIV', r'/')
lg.add('OPEN_PARENS', r'\(')
lg.add('CLOSE_PARENS', r'\)')

lg.ignore('\s+')

lexer = lg.build()

Before we begin working on the parser, we define ourselves an abstract syntax tree:

from rply.token import BaseBox

class Number(BaseBox):
def __init__(self, value):

self.value = value

def eval(self):
return self.value

class BinaryOp(BaseBox):
def __init__(self, left, right):

4 Chapter 1. User’s Guide

https://en.wikipedia.org/wiki/Backus-Naur_Form

RPly Documentation, Release 0.7.4

self.left = left
self.right = right

class Add(BinaryOp):
def eval(self):

return self.left.eval() + self.right.eval()

class Sub(BinaryOp):
def eval(self):

return self.left.eval() - self.right.eval()

class Mul(BinaryOp):
def eval(self):

return self.left.eval() * self.right.eval()

class Div(BinaryOp):
def eval(self):

return self.left.eval() / self.right.eval()

In RPython variables must have a specific type, so we use polymorphism with BaseBox to ensure that. In your own
code you can achieve the same by inheriting from BaseBox as we did here. If you are not writing RPython code, you
can ignore this completely.

Having covered all that we actually start working on the parser itself:

from rply import ParserGenerator

pg = ParserGenerator(
A list of all token names, accepted by the parser.
['NUMBER', 'OPEN_PARENS', 'CLOSE_PARENS',
'PLUS', 'MINUS', 'MUL', 'DIV'

],
A list of precedence rules with ascending precedence, to
disambiguate ambiguous production rules.
precedence=[

('left', ['PLUS', 'MINUS']),
('left', ['MUL', 'DIV'])

]
)

@pg.production('expression : NUMBER')
def expression_number(p):

p is a list of the pieces matched by the right hand side of the
rule
return Number(int(p[0].getstr()))

@pg.production('expression : OPEN_PARENS expression CLOSE_PARENS')
def expression_parens(p):

return p[1]

@pg.production('expression : expression PLUS expression')
@pg.production('expression : expression MINUS expression')
@pg.production('expression : expression MUL expression')
@pg.production('expression : expression DIV expression')
def expression_binop(p):

left = p[0]
right = p[2]
if p[1].gettokentype() == 'PLUS':

return Add(left, right)

1.2. Generating Parsers 5

RPly Documentation, Release 0.7.4

elif p[1].gettokentype() == 'MINUS':
return Sub(left, right)

elif p[1].gettokentype() == 'MUL':
return Mul(left, right)

elif p[1].gettokentype() == 'DIV':
return Div(left, right)

else:
raise AssertionError('Oops, this should not be possible!')

parser = pg.build()

As you can see production rules define a sequence of terminals (tokens) and non-terminals (intermediate values, in
this case only expression) using the production() decorator. The function receives a list of the tokens and non-
terminals and returns a non-terminal.

In this case we create an abstract syntax tree. We can now use this parser in combination with the lexer given to parse
and evaluate mathematical expressions as defined by our grammar:

>>> parser.parse(lexer.lex('1 + 1')).eval()
2
>>> parser.parse(lexer.lex('1 + 2 * 3')).eval()
7

1.2.1 Error Handling

As long as we parse code that is well formed according to our grammar, all is fine but one of the more difficult problems
in writing a parser is handling errors.

Per default in case of an error you get a rply.ParsingError:

>>> parser.parse(lexer.lex('1 1'))

This error will not provide any information apart from the position at which it occurred accessible through
getsourcepos().

While it is not possible to recover from an error, you can define your own error handler:

@pg.error
def error_handler(token):

raise ValueError("Ran into a %s where it was't expected" % token.gettokentype())

The token passed to the error handler will be the token the parser errored on.

1.2.2 Maintaining State

Sometimes it can be useful to have additional state within the parser, for example as a way to pass information to the
parser about the name of the file currently being parsed.

In order to do this we simply define a state object to pass around:

class ParserState(object):
def __init__(self, filename):

self.filename = filename

We can pass ParserState objects to the parser simply like this:

parser.parse(lexer.lex(source), state=ParserState('foo.py'))

This will call every production rule and the error handler with the ParserState instance as first argument.

6 Chapter 1. User’s Guide

RPly Documentation, Release 0.7.4

1.2.3 Precedence on rules

Sometimes it is useful to give a rule a manual precedence. For this pass the precedence argument to production. For
example, if we wanted to add an implicit multiplication rule to the above language (so that e.g. 16 32 is parsed the
same as 16 * 32) we use the following:

@pg.production('expression : expression expression', precedence='MUL')
def implicit_multiplication(p):

return Mul(p[0], p[1])

1.2. Generating Parsers 7

RPly Documentation, Release 0.7.4

8 Chapter 1. User’s Guide

CHAPTER 2

API Documentation

The API documentation provides detailed information on the functions, classes and methods, provided by RPly. If
you are looking for something specific, take a look at one of these documents:

2.1 rply

2.2 rply.token

9

RPly Documentation, Release 0.7.4

10 Chapter 2. API Documentation

CHAPTER 3

Additional Information

Everything not directly related to the usage of RPly.

3.1 License

Copyright (c) Alex Gaynor and individual contributors. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of rply nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

11

RPly Documentation, Release 0.7.4

12 Chapter 3. Additional Information

Python Module Index

r
rply, 9
rply.token, 9

13

RPly Documentation, Release 0.7.4

14 Python Module Index

Index

R
rply (module), 9
rply.token (module), 9

15

	User's Guide
	Generating Lexers
	Generating Parsers

	API Documentation
	rply
	rply.token

	Additional Information
	License

	Python Module Index

