

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	RPly 0.7.4 documentation

RPLY

Welcome to RPLY! A pure Python parser generator, that also works with RPython.
It is a more-or-less direct port of David Beazley’s awesome PLY, with a new
public API, and RPython support.

To start using RPly head over to Generating Lexers to learn how to
generate lexers, and Generating Parsers after that to see how you can
turn the tokens generated by your lexer into something more useful.

User’s Guide

	Generating Lexers

	Generating Parsers
	Error Handling

	Maintaining State

	Precedence on rules

API Documentation

The API documentation provides detailed information on the functions, classes
and methods, provided by RPly. If you are looking for something specific,
take a look at one of these documents:

	rply

	rply.token

Additional Information

Everything not directly related to the usage of RPly.

	License

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RPly 0.7.4 documentation

Generating Lexers

In order to parse text, you first have to turn that text into individual tokens
with a lexer. Such a lexer can be generated with the
rply.LexerGenerator.

Lexers are generated by adding rules to a LexerGenerator instance. Such a
rule consists of a name, which will be used as the type of the token generated
with that rule, and a regular expression defining the piece of text to be
matched.

As an example we will attempt to generate a lexer for simple mathematical
expressions:

lg = LexerGenerator()

lg.add('NUMBER', r'\d+')

lg.add('PLUS', r'\+')
lg.add('MINUS', r'-')

We have no defined rules for numbers, an addition and subtraction operator.
We can now build a lexer and use it:

>>> l = lg.build()
>>> for token in l.lex('1+1-1'):
... print(token)
...
Token(NUMBER, '1')
Token(ADD, '+')
Token(NUMBER, '1')
Token(MINUS, '-')
Token(NUMBER, '1')

This works quite nicely however there is but a small problem:

>>> for token in l.lex('1 + 1'):
... print(token)
Token('NUMBER', '1')
Traceback (most recent call last):
...
LexingError

What happened is that the lexer is able to match the '1' at the beginning of
the string and it yields the correct token for that but afterwards the string
' + 1' is left and no rule matches.

While we do want lexing to continue at that stage, we do not care about
whitespace and would like to ignore it. This can be done using
ignore():

lg.ignore(r'\s+')

This adds a rule which will be ignored by the lexer and not produce any
tokens:

>>> l = lg.build()
>>> for token in l.lex('1 + 1'):
... print(token)
...
Token('NUMBER', '1')
Token('ADD', '+')
Token('NUMBER', '1')

With this you know everything there is to know about generating lexers.

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RPly 0.7.4 documentation

Generating Parsers

In this part of the tutorial we will generate a parser for simple mathematical
expressions as defined by the following BNF [https://en.wikipedia.org/wiki/Backus-Naur_Form] grammar:

<expression> ::= "\d+"
 | <expression> "+" <expression>
 | <expression> "-" <expression>
 | <expression> "*" <expression>
 | <expression> "/" <expression>
 | "(" <expression> ")"

Furthermore we use the following lexer:

from rply import LexerGenerator

lg = LexerGenerator()

lg.add('NUMBER', r'\d+')
lg.add('PLUS', r'\+')
lg.add('MINUS', r'-')
lg.add('MUL', r'*')
lg.add('DIV', r'/')
lg.add('OPEN_PARENS', r'\(')
lg.add('CLOSE_PARENS', r'\)')

lg.ignore('\s+')

lexer = lg.build()

Before we begin working on the parser, we define ourselves an abstract syntax
tree:

from rply.token import BaseBox

class Number(BaseBox):
 def __init__(self, value):
 self.value = value

 def eval(self):
 return self.value

class BinaryOp(BaseBox):
 def __init__(self, left, right):
 self.left = left
 self.right = right

class Add(BinaryOp):
 def eval(self):
 return self.left.eval() + self.right.eval()

class Sub(BinaryOp):
 def eval(self):
 return self.left.eval() - self.right.eval()

class Mul(BinaryOp):
 def eval(self):
 return self.left.eval() * self.right.eval()

class Div(BinaryOp):
 def eval(self):
 return self.left.eval() / self.right.eval()

In RPython variables must have a specific type, so we use polymorphism with
BaseBox to ensure that. In your own code you can achieve
the same by inheriting from BaseBox as we did here. If
you are not writing RPython code, you can ignore this completely.

Having covered all that we actually start working on the parser itself:

from rply import ParserGenerator

pg = ParserGenerator(
 # A list of all token names, accepted by the parser.
 ['NUMBER', 'OPEN_PARENS', 'CLOSE_PARENS',
 'PLUS', 'MINUS', 'MUL', 'DIV'
],
 # A list of precedence rules with ascending precedence, to
 # disambiguate ambiguous production rules.
 precedence=[
 ('left', ['PLUS', 'MINUS']),
 ('left', ['MUL', 'DIV'])
]
)

@pg.production('expression : NUMBER')
def expression_number(p):
 # p is a list of the pieces matched by the right hand side of the
 # rule
 return Number(int(p[0].getstr()))

@pg.production('expression : OPEN_PARENS expression CLOSE_PARENS')
def expression_parens(p):
 return p[1]

@pg.production('expression : expression PLUS expression')
@pg.production('expression : expression MINUS expression')
@pg.production('expression : expression MUL expression')
@pg.production('expression : expression DIV expression')
def expression_binop(p):
 left = p[0]
 right = p[2]
 if p[1].gettokentype() == 'PLUS':
 return Add(left, right)
 elif p[1].gettokentype() == 'MINUS':
 return Sub(left, right)
 elif p[1].gettokentype() == 'MUL':
 return Mul(left, right)
 elif p[1].gettokentype() == 'DIV':
 return Div(left, right)
 else:
 raise AssertionError('Oops, this should not be possible!')

parser = pg.build()

As you can see production rules define a sequence of terminals (tokens) and
non-terminals (intermediate values, in this case only expression) using
the production() decorator. The function
receives a list of the tokens and non-terminals and returns a non-terminal.

In this case we create an abstract syntax tree. We can now use this parser in
combination with the lexer given to parse and evaluate mathematical expressions
as defined by our grammar:

>>> parser.parse(lexer.lex('1 + 1')).eval()
2
>>> parser.parse(lexer.lex('1 + 2 * 3')).eval()
7

Error Handling

As long as we parse code that is well formed according to our grammar, all is
fine but one of the more difficult problems in writing a parser is handling
errors.

Per default in case of an error you get a rply.ParsingError:

>>> parser.parse(lexer.lex('1 1'))

This error will not provide any information apart from the position at which
it occurred accessible through getsourcepos().

While it is not possible to recover from an error, you can define your own
error handler:

@pg.error
def error_handler(token):
 raise ValueError("Ran into a %s where it wasn't expected" % token.gettokentype())

The token passed to the error handler will be the token the parser errored
on.

Maintaining State

Sometimes it can be useful to have additional state within the parser, for
example as a way to pass information to the parser about the name of the file
currently being parsed.

In order to do this we simply define a state object to pass around:

class ParserState(object):
 def __init__(self, filename):
 self.filename = filename

We can pass ParserState objects to the parser simply like this:

parser.parse(lexer.lex(source), state=ParserState('foo.py'))

This will call every production rule and the error handler with the
ParserState instance as first argument.

Precedence on rules

Sometimes it is useful to give a rule a manual precedence. For this pass the
precedence argument to production. For example, if we wanted to add an
implicit multiplication rule to the above language (so that e.g. 16 32 is
parsed the same as 16 * 32) we use the following:

@pg.production('expression : expression expression', precedence='MUL')
def implicit_multiplication(p):
 return Mul(p[0], p[1])

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RPly 0.7.4 documentation

rply

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RPly 0.7.4 documentation

rply.token

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	RPly 0.7.4 documentation

License

Copyright (c) Alex Gaynor and individual contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of rply nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	RPly 0.7.4 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 rply	

 	
 	
 rply.token	

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	RPly 0.7.4 documentation

Index

 R

R

 	

 	rply (module)

 	

 	rply.token (module)

 Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		RPly 0.7.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Alex Gaynor.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/up.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

